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Intraday liquidity dynamics and news releases around price

jumps: Evidence from the DJIA stocks1
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Abstract3

We study the dynamics of liquidity around jumps by identifying their exact intraday
timing and retrieve all macroeconomic and firm-specific news for the 30 constituents of4

the Dow Jones Industrial Average index. We match around a third of the jumps with5

macroeconomic news announcements, while five per cent of the jumps are associated with6

firm-specific news. Jumps are found to coincide with a significant increase in trading costs7

and demand for immediacy, amplified by the release of news. Liquidity supply remains8

nevertheless high and there is rather strong evidence of resilience. Liquidity shocks in the9

effective spread and the number of trades are the key drivers behind the occurrence of a10

jump. Compared with macroeconomic news, the arrival of firm-specific news increases the11

probability of a jump twice as much. Finally, order imbalance appears to be the most12

informative liquidity variable with respect to price discovery, especially after the arrival of13

news.14
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1 Introduction1

In finance, the study of liquidity dynamics around intraday jumps is of utmost importance2

for several reasons. Not only jumps play an important role in periods of market stress (Bates3

2000; Duffie et al. 2000) but they also make markets incomplete since jump risk cannot easily4

be hedged away. As indicated by Pan (2002), this in turn can lead investors to demand a larger5

premium to carry these risks as risk averse investors are arguably expected to shun investments6

with sharp unforeseeable co-movements, all else being equal (Eraker et al. 2003). In addition,7

higher moments of asset return distributions and the related implied volatility smile are better8

explained when jumps are considered (Bates 1996; Bakshi et al. 1997; Andersen et al. 2002;9

Carr and Wu 2007). Finally, discontinuous price changes are recognized as an essential com-10

ponent in many practical financial applications. For example, jumps have distinctly different11

implications for the valuation of derivatives (Merton 1976a; Merton 1976b), risk measurement12

and management (Duffie and Pan 2001), as well as asset allocation (Jarrow and Rosenfeld13

1984).14

In spite of the relevance of the topic, there are just a few empirical studies about the

dynamics of liquidity around intraday jumps. To complement the literature in this area of15

research, we carry out an original intraday event study of abnormal levels of spreads, trading16

volume, number of trades, mean trade size, order imbalance and depth around jumps for the17

30 DJIA constituents between July 2007 and December 2009. We relate our findings to the18

four key dimensions of liquidity, namely, trading quantity, trading speed, trading cost, and19

price impact. Together, they measure liquidity, i.e. the ability to trade large quantities quickly20

at low cost with little price impact.21

Regarding NYSE stocks, only two event-type studies focus on liquidity dynamics around

large price movements, but none considers the four liquidity dimensions and none looks at22

jumps. Lee et al. (1993) study the reaction of spreads to earnings announcements and find that23

for 230 randomly chosen firms spreads in 1988 increase dramatically in the half hour containing24

the earning announcement, and remain wider for up to one day, while quoted depths return to25

nonannouncement levels after three hours. Brooks (1994) condition their study on completely26

unanticipated events such as the death of a CEO. For the period 1989 through 1992, they27

document that these events lead to wider spreads and higher volume that remain significant28

for over one hour. In this paper, we take a different approach since we condition the analysis29

of liquidity dynamics around jumps directly on the event times identified by the intraday jump30

detection test of Lee and Mykland (2008).31
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The only study of liquidity dynamics around jumps is done by Jiang et al. (2011) who

study the effect of macroeconomic news announcements on jumps in the U.S. Treasury market.1

Contrary to Jiang et al. (2011), we correct for seasonality in our median-based event study and2

explicitly test for the impact of jumps on liquidity. We also deal with large U.S. stocks and3

include all information arrivals leading to jumps. While macroeconomic events obviously affect4

individual firms, individual stock prices are also affected by sudden unexpected firm-specific5

information that can force an abrupt revaluation of the firms stock. Therefore, conditioning6

the intraday analysis on macro news does not completely capture the liquidity response by7

market participants to jumps in stock prices since many jumps are not directly associated with8

macro news (Lahaye et al., 2011). Bollerslev et al. (2008) indeed show that firm-specific news9

events are the dominant effect in terms of their immediate price impact at the individual stock10

level. Lee and Mykland (2008) even note that for individual equities, the majority of jumps11

occur with unscheduled news and their magnitudes are comparable to those that occur with12

earnings announcements.13

To the best of our knowledge, no event study has been carried out on the U.S. stock market

to analyze the link between intraday liquidity dynamics and properly identified intraday jumps,14

whatever the type of information arrivals. To complement the nonparametric event study, we15

implement a parametric analysis to assess the contribution of both liquidity shocks and news16

in both the occurrence of jumps and the price discovery process. Not only we analyze the17

dynamics of liquidity around all jumps by identifying their exact intraday timing, but we18

also retrieve all macroeconomic news announcements (prescheduled or not) as well as all firm-19

specific news provided by the Dow Jones and Reuters News Services. We are therefore able to20

study the impact of news on liquidity around the detected jumps. We match around a third21

of the jumps with macroeconomic news announcements, while five per cent of the jumps are22

associated with firm-specific news. A large majority of the jumps are therefore expected to23

result from pure market liquidity variations.24

If we characterize liquidity by market width, jumps do worsen market liquidity conditions.

If trading quantity and immediacy are considered, the picture is different. The demand for25

immediate execution increases sharply around jumps. If we zoom in on the drivers behind26

this volume surge, we show that both the number of trades and the mean trade size jump27

up. At the same time, depth (at the best bid-offer) does not withdraw from the market. We28

show that positive (negative) jumps are associated with even thicker sell side (buy side). Such29

findings suggest that jumps depend mainly on the elevated trading aggressiveness of one side30

of the market, and not on the traders reluctance to provide liquidity on the opposite side31
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of the book. In fact, a greater demand for liquidity, rather than a weak liquidity supply, is1

associated with extreme price changes. As such, jumps do not seem to be due to an endogenous2

deficient provision of market liquidity. We also present evidence of significant resilience after3

the occurrence of a jump, whatever the liquidity measures under consideration.4

Regarding the release of news around jumps, we find that news arrivals amplify the rise in

both trading costs and demand for immediacy. However, the release of news does not really5

affect neither order imbalance nor liquidity provision: liquidity providers do not respond to6

the increase in trading costs and demand for immediacy by providing less liquidity, keeping7

order imbalance relatively unchanged.8

We further indicate that liquidity shocks in the effective spread and the number of trades

are the key drivers behind the occurrence of a jump. Compared with macroeconomic news, the9

arrival of firm-specific news is also identified as a stronger news driver behind the occurrence10

of jumps. Finally, several liquidity variables are shown to contribute to price discovery. This11

contribution is nevertheless not much affected by the occurrence of jumps. The post-news12

price discovery process is more informative, but mainly limited to order imbalance. Overall,13

order imbalance appears to be the most informative liquidity variable with respect to price14

discovery, especially after the arrival of news.15

The remainder of the paper is organized as follows. In Section 2, we explain the procedure

used to detect price jumps. In Section 3, we describe the data and provide summary statistics.16

In Section 4, we define our event study methodology. In Section 5, we report and interpret the17

empirical results. We conclude in Section 6.18

2 Jump detection19

To learn about the stochastic features of irregular jump arrivals and their associated market20

information, it is critical to use robust tests to detect jumps. A variety of formal tests have21

been developed to identify the presence of jumps, most of them being typically designed for22

the analysis of low frequency data.1 However, the most natural and direct way to learn about23

jumps is by studying high frequency or intraday data. The earliest contributions in the iden-24

tification of jumps using intraday data include Barndorff-Nielsen and Shephard (2004, 2006)25

who developed a jump robust measure of integrated variance called realized bipower variation26

1See Wang (1995), Aı̈t-Sahalia (2002), Carr and Wu (2003), Johannes (2004) and Johannes et al. (2009),
among others
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(RBV). It has been used by Becker et al. (2009), Giot et al. (2010) and Wright and Zhou1

(2009), among others, to test for a jump component in daily volatility. Exploiting the prop-2

erties of RBV, Lee and Mykland (2008) developed an alternative non-parametric test which3

yields both the direction and size of detected jumps at the intraday level, allowing character-4

ization of jump size distribution as well as stochastic jump intensity. Most importantly, the5

test allows for identification of the exact timing of the jump.6

Let us define the event of interest as a jump in a firm’s stock price. In essence, a price

jump is a significant discontinuity in a price series. To define what is meant by ’significant7

discontinuity’, we need an underlying price model. Following Andersen et al. (2007) and Lee8

and Mykland (2008), we assume that the observed log-prices p are generated by a continuous9

time Brownian semi-martingale process with finite activity jumps:10

dp(s) = µ(s)ds+ σ(s)dW (s) + κ(s)dq(s), (2.1)

where µ(s) is the drift term with a continuous and locally finite variation sample path, σ(s)

is a strictly positive spot volatility process and W (s) is a standard Brownian motion. The11

component κ(s)dq(s) corresponds to the pure jump component, where dq(s) = 1 if there is a12

jump at time s and 0 otherwise, and κ(s) is the jump size.13

The exact timing and size of a price jump within a day can be detected in a computationally

simple way using the jump test of Lee and Mykland (2008). The intuition behind the jump14

test is straightforward: in the absence of jumps and after standardizing for the local volatility,15

instantaneous returns are increments of Brownian motion. Standardized returns that are too16

extreme to plausibly come from a standard Brownian motion must reflect jumps.17

More formally, assume we have T days of M equally-spaced intraday returns and denote

the i-th return of trading day t by rt,i = p(t−1+i/M)−p(t−1+(i−1)/M), where i = 1, ...,M

and the length of a trading day is normalized to unity. The associated test statistic for jumps

in rt,i is the absolute return standardized with a jump-robust estimate of the local volatility

σt,i =

√

∫ t−1+i/M

t−1+(i−1)/M
σ2(s)ds.

Lee and Mykland (2008) use a rolling window of observations to estimate the local volatility.

This approach has the disadvantage of being highly dependent on the size of window used in18

estimating volatility. If the window size used is too large, then it may not be able to capture19
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time-varying volatility. On the other hand, if the window size used is too small, then the test1

result may be influenced by intraday seasonality. Boudt et al. (2011, 2012) show that precise2

estimates of σt,i can be obtained by approximating the intraday volatility σt,i as the product3

of a jump-robust estimate of the average daily volatility ξt together with an intraday volatility4

factor ft,i. The associated test statistic for jumps in rt,i is the absolute return standardized with5

a jump-robust estimate of the average daily volatility ξt together with an intraday volatility6

factor ft,i:7

Jt,i =
|rt,i|

ξtft,i
. (2.2)

Lee and Mykland (2008) propose estimating ξt as the square root of the realized bipower

variation (RBV) because RBV converges, under weak conditions, to the integrated variance,8

i.e. for M → ∞9

RBVt(M) = µ−2
1

M
∑

i=2

|rt,i||rt,i−1|
p
→

∫ t

t−1
σ2(s)ds, (2.3)

where µ1 =
√

2/π ≃ 0.79788 (Barndorff-Nielsen and Shephard 2006). For ft,i we use the

corresponding truncated maximum likelihood periodicity estimate recommended by Boudt10

et al. (2011). The estimation scheme omits returns that might contain jumps to avoid biased11

estimates of the periodicity.212

Under the null of no jumps, the test statistic Jt,i follows approximately the same distribution

as the absolute value of a standard normal variable and its sample maximum is Gumbel-13

distributed. Lee and Mykland (2008) propose to reject the null of no jump effect on rt,i if14

Jt,i > G−1(1− α)Sn + Cn, (2.4)

where G−1(1− α) is the (1− α) quantile function of the standard Gumbel distribution, Cn =

(2 log n)0.5 − log(π)+log(logn)
2(2 logn)0.5

and Sn = 1
(2 logn)0.5

, n being the total number of observations (i.e15

M ×T ). With a probability α of type I error, we reject the null of no jump if Jt,i > Snβ
∗+Cn16

with β∗ such that exp(− exp−β∗
) = 1 − α, i.e. β∗ = − log(log(1 − α)). This conservative17

procedure is expected to find only α spurious jumps in a given sample of n observations. In18

the empirical analysis on the 30 Dow Jones Industrial Average constituents for the period July19

2007-December 2009, we set α = 0.1 and sample returns at the 2-minute frequency.20

Recent studies by Andersen et al. (2010), Andersen et al. (2012) and Bajgrowicz and Scaillet

2The periodicity factor is estimated using the default implementation in the R package highfrequency (Cor-
nelissen et al., 2013). See Boudt et al. (2011, 2012) for further details about the periodicity filters and the
importance of adjusting for periodicity when testing for intraday jumps.
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(2011) on a similar data set show that the 2-minute sampling frequency strikes a balance1

between using fine-grained sampling and avoiding market microstructure noise. In fact, on the2

one hand, a high sampling frequency is needed to disentangle the jumps from the Brownian3

motion: when sampling too sparsely, jumps disappear because of time averaging, as illustrated4

by Aı̈t-Sahalia and Jacod (2004). On the other hand, at ultra high frequencies, microstructure5

effects cause a difference (called microstructure noise) between the observed price series and6

the underlying efficient price following the process in (2.1). While microstructure noise is well-7

known to impact the accuracy of integrated variance estimators (e.g. Hansen and Lunde 2006),8

Boudt et al. (2011) show that one should not be too worried about the impact of microstructure9

noise on the size of the Lee-Mykland test statistic. The intuition for this is that, in the presence10

of i.i.d. normal microstructure noise with variance σ2
ǫ (and independent of the efficient price11

process), the variance of the no jump component of the return rt,i is σ
2
t,i + 2σ2

ǫ instead of σ2
t,i.12

Since, the realized bipower variation then estimates the integrated variance plus the total noise13

variation, the Lee-Mykland test still has good size properties. The power of the Lee-Mykland14

test reduces as the variance of the microstructure noise increases, since relatively small jumps15

are more difficult to detect. Finally, another reason for not being too concerned about the16

microstructure noise is that the analysis is conducted on very liquid large capitalization stocks17

and, as noted by Bajgrowicz and Scaillet (2011), that, because of the emergence of electronic18

and high-frequency trading, volume has increased significantly over the past years, making19

previous recommendations concerning the maximum frequency to avoid microstructure noise20

too conservative.21

3 Data22

Tick-by-tick records of transactions and quotations on the 30 Dow Jones Industrial Average23

constituents (as of January 1, 2008) are extracted from the Trades and Quotes (TAQ) database24

provided by the NYSE for the period July 2007-December 2009.3 There are 628 trading days25

over these 2.5 years. Prior to the analysis, the data is cleaned using the step-by-step procedure26

proposed in Barndorff-Nielsen et al. (2010) and implemented in the R package highfrequency27

(Cornelissen et al. 2013). Data are sampled at a two-minute frequency. Days with more than28

25% of zero returns are excluded from the analysis. At the 2-minute frequency, 1627 jumps29

were detected. Like in Bos et al. (2012), we find that sampling at a lower frequency reduces30

3The tickers of the stocks in the sample are: AA, AIG, AXP, BA, C, CAT, DD, DIS, GE, GM, HD, HON,
HPQ, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MO, MRK, MSFT, PFE, PG, T, UTX, VZ, WMT, XOM.

7
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Figure 1: Average number of jumps detected per stock per intraday 2-minute interval when
jumps are detected using the non-adjusted test statistic |rt,i|/ξt (left figure) versus the period-
icity adjusted test statistic |rt,i|/(ft,iξt).
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(b) With adjusting the test statistic for periodicity

the number of jumps detected. At the 4, 6, 8 and 10 minute sampling frequency, 547, 320,1

202 and 154 jumps were detected, respectively. Between 50 and 60% of these lower frequency2

jumps correspond to time intervals in which the test on 2-minute returns detected jumps.3

A key feature of the implementation of the Lee-Mykland test given in (2.2) is the adjust-

ment of the average daily volatility for intraday periodicity. Ignoring periodicity leads to an4

overdetection of jumps for the intraday times when volatility is periodically high (typically,5

at the opening and closing of markets) and to an underdetection of jumps when periodicity is6

low (typically, at lunch time). In Figure 1, we plot the intraday distribution of detected jumps7

when using the periodicity adjusted test statistic |rt,i|/(ξtft,i) (right plot) versus the unad-8

justed test statistic |rt,i|/ξt. The adjustment for periodicity makes a very significant difference.9

After adjustment, most of the jumps are in the 10:00 - 10:02 am interval and 14:14-14:20 inter-10

val.4 Those intervals correspond to the intraday times when most of the macroeconomic news11

scheduled during the day are released.12

4Throughout the paper, we use the EST time zone.

8

Electronic copy available at: https://ssrn.com/abstract=1717791



Out of 1627 jumps, 630 jumps occur within 10 minutes of the announcement time of

US macroeconomic news. Using the Dow Jones and Reuters News Services, we include all1

scheduled announcements as well as all the unscheduled macro news identified by a search on2

an extensive set of keywords.5 215 macroeconomic news are released within the 2-minute price3

jump. 239 (versus 300) macro news are released within 9 minutes after (versus before) the4

2-minute price jump interval. Many jumps thus correspond to multiple news items.5

In addition, we study the association between jumps and firm-specific Dow Jones and

Reuters news. Using the same 10-minute window filter, we match jumps with firm-specific6

news and identify 90 associations, which is in line with Bajgrowicz and Scaillet (2011). For 237

jumps, there is a news item in the 2-minute jumps interval. 25 (versus 52) firm-specific news8

are released within 9 minutes after (versus before) the 2-minute price jump interval.9

For the analysis of liquidity around jumps, we need to match the trades and quotes data

sets. Similar to Chordia et al. (2000), the direction of each transaction is determined by10

the widely-used Lee and Ready (1991) algorithm.6 Our data is sampled at a two-minute11

frequency. On a similar data set, Andersen et al. (2012) show that this frequency strikes a12

balance between using fine-grained sampling and avoiding market microstructure noise. For13

each interval i, we observe NTi transactions and Qi quotes.7 Let pi,k, aski,k and bidi,k be14

respectively the transaction price, (best) ask quote price, and (best) bid quote price associated15

to the kth trade in interval i. In addition, let sizei,k, askdepthi,k and biddepthi,k be the trade16

size, ask depth (i.e. number of shares displayed at the best offer quote price), and bid depth17

(i.e. number of shares displayed at the best bid quote price) associated to the kth trade in18

interval i. Finally, define aski,(k) and askdepthi,(k) (resp. bidi,(k) and biddepthi,(k)) as the price19

and depth for the kth best ask (bid) quote in interval i (without necessarily corresponding to20

any trade).21

5The keywords are: Budget Deficit, Business Inventories, Consumer Confidence, Capacity Utilization, US
Credit, Consumer Prices, Durable Goods, Existing Home Sales, Fed Credit, Fed and Funds, Fed Funds Rate, Fed
GDP, Factory Orders, Fed Rate, GDP Deflator, Housing Starts, Industrial a Production, Leading Indicators,
NAPM, Nonfarm Payroll Employment, Personal and Consumption, Personal and Income, Producer and Price
and Index, Trade and Balance, Unemployment and Claims, Unemployment Rate, US Construction, US GDP,
US M1, US M2, US M3, US Retail Sales. Jiang et al. (2011) apply the same 10-minute window jumps-news
matching rule for the U.S. Treasury Market. In previous studies on stock markets, the relationship is only
studied at the daily level, whereby the test consists in identifying whether jumps occur on days with news or
not (Bajgrowicz and Scaillet, 2011; Lee, 2012).

6As a number of papers in the literature points out, this algorithm is a standard and accurate method for
signing transactions (see, e.g. Hvidkjaer 2006). This algorithm performs best for NYSE transactions: 93% of
transactions are correctly classified in the sample examined in Lee and Radhakrishna (2000) while Finucane
(2000) and Odders-White (2000) report 85% of accurate trade directions.

7For simplicity of notation, we omit henceforth the index for the day t.

9
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We measure tightness by the proportional quoted bid-ask spread (QS) and the proportional

effective spread (ES). For the kth quote:1

QSi,k = (aski,k − bidi,k)/[
1

2
(aski,k + bidi,k)]. (3.1)

Half the quoted spread represents the cost of liquidity before a transaction for a quantity

of shares not exceeding the available depth (at best bid-offer). Quoted spreads are prone to2

overestimating trading costs, since market orders are frequently price improved, i.e. they trade3

within the quotes. QS is therefore complemented by ES, which measure actual trading costs.4

ES is defined as twice the absolute value of the difference between the execution price and the5

midpoint of the prevailing quoted spread. For the kth transaction,6

ESi,k = [2Di,k(pi,k −
1

2
(aski,k + bidi,k))]/

1

2
(aski,k + bidi,k), (3.2)

where Di,k stands for the direction of the kth trade in interval i (+1 and -1 for buy and sell

orders respectively).7

For both spreads, we obtain two-minute observations by calculating the size-weighted av-

erage over the interval. Size-weighted proportional quoted spreads (QSPRD) are weighted by8

the depth available at the prevailing quotes while size-weighted proportional effective spreads9

(ESPRD) are weighted by the number of shares traded:10

QSPRDi =

∑Qi

k=1QSi,k(askdepthi,k + biddepthi,k)
∑Q

k=1(askdepthi,k + biddepthi,k)
(3.3)

and11

ESPRDi =

∑NTi

k=1 ESi,ksizei,k
∑NTi

t=1 sizei,k
, (3.4)

where Qi is the number of quotes in interval i and NTi is the number of trades.12

Depth is looked at by measuring the quantity of shares available at the best bid and offer.

More precisely, mean depth is measured by computing the sum of the average depth at the bid13

and at the ask over all quotes within a two-minute interval.14

DPTHi = BDPTHi +ADPTHi, (3.5)

10
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with1

BDPTHi =
1

Q

Q
∑

k=1

biddepthi,k, (3.6)

and similarly for mean ask depth. Depth imbalance (DI) is computed as follows:2

DIi =
(ADPTHi −BDPTHi)

DPTHi
(3.7)

In addition to tightness and depth, we also measure trading volume (VOLU) by the total

value of all the shares traded over interval i:3

V OLUi =

NTi
∑

k=1

Sizei,k, (3.8)

where Sizei,k is the number of shares for trade k in interval i. Trading volume can then be

decomposed into two components: The number of trades over interval i (NTi) and the average4

trade size over interval i, given by ATSi =
1

NTi
V OLUi. Finally, we also take order imbalance5

(OI) into account, which is estimated as the value of shares of buyer-initiated trades less the6

value of shares of seller-initiated trades (scaled by total trading volume):7

OIi =

∑NTi

k=1 Di,kSizei,k
V OLUi

, (3.9)

where Di,k is 1 if the kth trade of interval i was a buy, -1 if it was a sell.8

Table 1 shows some summary statistics for all the liquidity variables described above. The

statistics are reported separately for days with jumps and days without jumps. At first sight,9

the median liquidity on days without jumps does not look fundamentally different than the10

median liquidity on days with jumps. However, these samples are unmatched, with possibly11

very different values of ‘normal’ liquidity (i.e. liquidity under the null of no effect of jumps on12

liquidity). It is therefore difficult to draw any conclusion from this table regarding the effect of13

jumps on liquidity. To carry out such an analysis, we use an event study methodology defined14

in the next Section. We complement it with a regression analysis to assess the role of liquidity15

shocks in both jumps and price discovery, while controlling for the arrival of news as well.16

11
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Table 1: Summary statistics
Returns QSPRD ESPRD VOLU ATS NT OI* DPTH ADPTH BDPTH DI*

(in%) (in%) (in%) (in %) (in%)
Days without jumps (14994 days)
min -24.36 0.01 0.00 100.00 100.00 1.00 0.00 0.00 0.00 0.00 0.00
med 0.00 0.04 0.04 7900.00 459.09 17.00 36.11 91.57 43.65 44.01 17.08
mean -0.00 0.05 0.06 19049.04 752.11 20.90 41.00 758.28 377.62 380.65 21.42
max 28.72 8.54 11.33 18189800.00 2733800.00 120.00 100.00 2269018.61 1279274.21 1855903.13 99.65
Days with jumps (1481 days)
min -17.63 0.01 0.00 100.00 100.00 1.00 0.00 2.00 1.00 1.00 0.00
med 0.00 0.04 0.04 8200.00 465.62 17.00 36.13 85.92 40.45 41.10 18.27
mean 0.00 0.05 0.06 20163.25 725.17 22.19 41.05 537.12 270.15 266.97 22.76
max 17.44 2.84 14.83 4468334.00 246160.00 120.00 100.00 367331.08 352897.90 162450.59 99.56

Returns are 2-minute log returns. QSPRD is the 2-minute size-weighted proportional quoted spread. ESPRD is the 2-minute size-weighted

proportional effective spread. V OLU measures trading volume, i.e. the total value of all the shares traded over 2 minutes. NT is the total

number of transactions over 2 minutes. ATS is the average size of a transaction (i.e. V OLU/NT ) over a 2-minute interval. OI∗ is the absolute

order imbalance computed over 2 minutes. ADPTH and BDPTH are respectively the average depth at the ask and at the bid observed over

2 minutes. DPTH is the sum of ADPTH and BDPTH . DI∗ is the absolute depth imbalance. All statistics are computed over the 30 stocks

included in the sample covering the July 2007-December 2009 time period.

4 Methodology1

To study the impact of jumps on liquidity, we perform intraday event studies on different2

measures of liquidity. The null hypothesis of the event study is that: Jumps have no effect3

on liquidity. The alternative is: Liquidity around a price jump is abnormally low or high.4

The null will be tested by running multiple event studies on the different measures of liquidity5

described in Section 3. Our event study method proceeds in five steps: 1. Define the event and6

event window; 2. Collect a sample of event occurrences; 3. Standardize liquidity measures; 4.7

Aggregate individual events; 5. Evaluate hypothesis.8

Definition of the event and event window. The period over which we study the effect

of the price jump on liquidity is called the event window. It is centered around the 2-minute9

interval in which the jump has occurred. It contains further the 60 minutes before and after10

that jump interval. Observations of liquidity measures will be indexed in event time using τ ,11

which indicates the number of minutes relative to the jump. Defining τ = 0 as the intraday12

time of the jumps, i + τ indicates the τ -th minute counting from i. The full event window is13

represented by all even integer τ ∈ [−60, 60]. The length of this window provides a trade-off14

between the ability to capture the full effect of a jump, demanding a longer window, and the15

ability to include jumps that occur near the beginning or closing of the trading day.816

Event occurrences. The Lee and Mykland jump test presented in Section 2 detects 1627

8It would not be meaningful to construct event windows containing observations from different days, due to
overnight trading.
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Table 2: Summary statistics for the joint distribution of jumps and news releases
Positive jumps Negative jumps

No News Macro News Firm News No news Macro News Firm News
Number of Jumps Total 465 331 117 22 374 280 82 16

10:30-11:30 89 68 18 4 78 67 7 4
11:30-12:30 82 65 14 5 74 58 11 6
12:30-13:30 75 66 6 3 66 56 10 1
13:30-14:30 148 78 65 7 136 80 54 4
14:30-15:30 71 54 14 3 20 19 0 1

Jump Size Min 0.122 0.122 0.215 0.257 -17.626 -17.626 -9.097 -2.133
(in%) Median 0.604 0.525 1.029 0.792 -0.544 -0.513 -0.995 -0.673

Max 28.723 17.435 28.723 6.899 -0.171 -0.171 -0.307 -0.233

Third and seventh columns present summary statistics for all positive and negative jumps, respectively. Columns 4 (resp. 8), 5 (resp. 9) and 6

(resp. 10) are summary statistics for positive (resp. negative) jumps that coincide with the absence of news release, the release of macronews

and the release of firm news in the 10 minutes around the jump interval, respectively. All statistics are computed over the 30 stocks included in

the filtered sample of 839 jumps in the period July 2007-December 2009, used for the event study analysis. The hourly interval hh:30-(hh+1):30

is hh:30 included and (hh+1):30 excluded.

jumps in our sample of the 30 DJIA constituents between July 2007 and December 2009. We1

impose two additional conditions before including jumps to the event sample. First, jumps2

occurring in the first and last hour of the day are excluded since comparing incomplete event3

windows in a cross sectional framework would severely hinder our ability to infer the dynamics4

of liquidity measures throughout the event window. Second, when two jumps occur within5

the same day, they must be separated in time by at least half a trading day. This criterion6

prevents contamination of jump events. If two jumps were to occur close in time, then the7

after-effects of the first jump might affect observations near the second jump. After applying8

the first filter, the number of detected jumps shrinks from 1669 to 1096, while the second filter9

reduces further the event sample to 839 jumps.10

Table 2 indicates that the timing of the jumps associated with news does not match the

timing of those that are not. While the latter are relatively uniformly distributed over the11

day, most of the former are associated with macroeconomic news and occur in the 13:30-14:3012

interval. The second panel of Table 2 evaluates the impact of news on the size of the jumps.13

The median magnitude of jumps coinciding with macroeconomic news arrivals tends to be14

almost twice as large as the median size of jumps that are not associated with news. The15

median size of jumps associated with firm news is also larger, albeit smaller than in the case16

of macroeconomic news.17

Figure 2 reports the median of the (centered absolute) standardized returns rt,i/(ξtft,i)

for each event time. If jumps have no effect on the other returns in the window, the median18

13
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Figure 2: Standardized returns around jumps
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(a) Standardized returns
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(b) Absolute standardized returns

Full black line is the median (absolute) standardized return. The shaded region is the range between the 2.5% and 97.5%

quantiles. Black dots (•) indicate that the null hypothesis of the Mann-Whitney test (according to which the standardized

liquidity measures in the event window around jumps come from the same distribution as the ones on days without jumps)

is rejected at the 99% confidence level. White bullets (◦) indicate a rejection at a 95% only (i.e. 1% < p− value ≤ 5%).

(centered absolute) standardized return should be close to zero.9 Interestingly, we find that1

the median return in the 2-minute interval after a positive price jump tends to be negative,2

while this median is positive after a negative jump. This would indicate that part of the price3

jump is due to some short-term market overreaction, although it remains small in size. In4

addition, overreaction to negative jumps (which are typically associated with bad news) seems5

to be more pronounced than overreaction to positive jumps. In the right plot, we also notice6

that volatility on days with jumps increases above its level on days without jumps around 67

minutes before the jump. Subsequently, volatility stays above both the pre-jump level and the8

level observed on days without jumps for more than 30 minutes after the jump.9

Standardization. Liquidity measures need to be standardized to make them comparable

across firms, days and intraday times. In contrast to most event studies on liquidity, we10

use the median (instead of the mean) for standardizing. This is motivated by the fact that11

9The |rt,i|/(ξtft,i) are centered around the median of the absolute value of a standard normal random variable,
which is 0.674 (i.e. the 75% quantile of the standard normal distribution).
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distributions of liquidity measures are heavily skewed to the right. Plerou et al. (2005) describe1

in much detail the distribution of liquidity measures. For a liquidity measure L, denote by Lt2

the median of the distribution of liquidity values on day t, and write the corresponding sample3

median as L̂t4

For all liquidity variables except depth and order imbalance, we assume a multiplicative

model that specifies the intraday liquidity value Lt,i in the absence of jumps as the product5

between the daily factor Lt, a deterministic intraday factor Li and an i.i.d. error term ηt,i with6

median 1:7

Day without jumps: Lt,i = LtLiηt,i. (4.1)

This specification is related to the multiplicative error model in Engle (2002), applied to analyze

volume by Manganelli (2005). The impact of jumps on the liquidity value is specified as the8

additive component jt,i:9

Day with jumps: Lt,i = LtLiηt,i + jt,i. (4.2)

If jumps have no impact on liquidity, then jt,i = 0 for all i, t. Let ND be the collection of days

without jumps. It follows that under the model assumptions above, the natural estimator for10

the intraday liquidity factor Li is:11

L̂i = mediant∈ND
Lt,i

L̂t

. (4.3)

Based on these results, we analyze the percentage deviation of the deseasonalized liquidity

measure from its daily level12

L̄t,i =
Lt,i

L̂tL̂i

− 1. (4.4)

If jumps have no impact on liquidity, then L̄t,i should have a zero median and have the same

distribution on jump days as on non jump days. We will test this using the Mann-Whitney13

test.14

Because depth and order imbalance can take both positive and negative values, they are

more naturally modeled as additive processes:15

Lt,i = Lt + Li + εt,i + jt,i, (4.5)

15
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with εi,t an i.i.d. error term with median zero. Similarly as above, this leads to the intraday

periodicity estimator1

L̂i = mediant∈ND(Lt,i − L̂t) (4.6)

and the standardization2

L̄t,i = Lt,i − L̂t − L̂i. (4.7)

Aggregation. To make a general statement about the effect of jumps on liquidity, we have

to aggregate all events into a single one. For each event period τ ∈ [−60, 60], we summarize3

observed standardized liquidity measures by taking the median of the standardized liquidity4

values in (4.4)-(4.7) across individual events. We again prefer the median over the mean on5

two grounds. First, the distributions of L̄t,i remain heavily skewed, which calls for the use of6

a robust measure of central tendency. Second, by construction, the median value of L̄t,i in7

the control sample of non-jump days will be equal to 0. Therefore, we retain the ability to8

directly interpret the aggregated values of L̄t,i as percentage deviations from typical levels. We9

aggregate over all firms and years in the sample, but distinguish between event windows with10

positive and negative jump returns. Finally, in order to visualize the spread of the distribution11

of standardized liquidity measures, we also compute the 2.5% and 97.5% empirical quantiles.12

Hypothesis testing. For each time interval of the aggregate event window, we use the

Mann-Whitney test to evaluate the null hypothesis that the distribution of the standardized13

liquidity values on jump days is the same as on days without jumps.14

5 Empirical analysis15

The unique feature of the following empirical event study is to analyze the dynamics of liquidity16

around all jumps by identifying their exact intraday timing. We study the dynamics of spreads,17

trading volume, number of trades, average trade size, order imbalance and depth and relate18

them to the four dimensions of liquidity identified by Liu (2006): trading cost (width), trading19

quantity (depth), trading speed (immediacy) and price impact (resiliency). We subsequently20

carry out a parametric analysis to assess the role of liquidity shocks in both jumps and price21

discovery. We also control for the arrivals of news and do not exclusively focus on macroeco-22

nomic news announcements. Although macro news are associated with jumps more often than23

firm-specific news, the latter typically dominate the former when it comes to estimating the24

magnitude of the price impact (at the individual stock level, of course).25

16
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5.1 Spreads around jumps1

Figure 3 shows a significant shock in spreads at the time of a price jump, indicating a rise in at2

least one of the three typical cost components of the spread: order processing costs, inventory3

holding costs, and/or asymmetric information risk.4

Jumps lead to a 100% deviation from the ’typical’ time of day value in ex-post liquidity, as

measured by the size-weighted proportional effective spread (ESPRD). This negative impact5

of jumps on ex-post liquidity must nevertheless be put into perspective. The ESPRD shows6

strong resilience since its level on days with jumps is back to its level on day without jumps7

after around half an hour. In addition, there is no evidence of leakage since no rise in ex-post8

liquidity occurs before the jump: Spreads in the minutes preceding a jump are similar to those9

on days without jumps. The classical explanation would be that market participants could not10

adjust their behavior in advance of the release of important news. It may be the case that most11

of these jumps occur at unpredictable time schedules. They may also come from unexpected12

revisions in market expectations following scheduled news announcements.13

The impact of jumps on ex-ante liquidity (as measured by the QSPRD, i.e. the size-

weighted proportional quoted spread) is less pronounced since the incremental effect of jumps14

is around 27% (versus 100% for ex-post liquidity). Ex-post liquidity is thus more severely15

affected than ex-ante liquidity, confirming that liquidity providers respond to the occurrence16

of jumps by being reluctant to improving their displayed quoted prices rather than by posting17

wider bid-ask spreads. Finally, quoted spreads show strong resiliency as well. After less than18

15 minutes after the jump, they exceed the normal level by less than 10%.19

Trading costs are therefore affected by the occurrence of jumps. With respect to the first

dimension of liquidity (as measured by width), market liquidity is worsened by the occurrence of20

jumps, which are typically triggered by events with large information contents. These findings21

support the view of Lee et al. (1993) and Handa et al. (2003) who show that well-defined price22

adjustments, higher volatility, and larger spreads are observed around important events, such23

as earnings announcements. Lee et al. (1993) document a sharp rise in spreads in the half hour24

containing an earnings announcement, especially those that result in high returns. They also25

find that effective spreads rise more than quoted spreads.26

17

Electronic copy available at: https://ssrn.com/abstract=1717791



Figure 3: Size Weighted Proportional Effective and Quoted Spreads
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(a) Effective Spreads (ESPRD)
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(b) Quoted Spreads (QSPRD)

Full black line is the median standardized liquidity measure. The shaded region is the range between the 2.5% and 97.5%

quantiles. Black dots (•) indicate that the null hypothesis of the Mann-Whitney test (according to which the standardized

liquidity measures in the event window around jumps come from the same distribution as the ones on days without jumps)

is rejected at the 99% confidence level. White bullets (◦) indicate a rejection at a 95% only (i.e. 1% < p− value ≤ 5%).

5.2 Trading volume and depth around jumps1

The demand for immediate execution increases around jumps. We observe this evidence in2

terms of trading volume, number of trades, and average trade size. Figure 4 shows a very3

significant surge in trading volume at the time of a price jump. In the 2-minute jump interval,4

the abnormal median trade volume is three times the time-of-day median value across days5

with no jumps. We also note that trading volume starts increasing significantly more than 106

minutes before the occurrence of the jump and it remains significantly higher than its median7

level in the 60 minutes following the price jump. According to Easley and O’Hara (1992)8

and Glosten and Milgrom (1986), this unusually large trading volume puts pressure on the9

specialists’ inventory and may signal informed trading. Thus, high demand for immediacy10

around information disclosures is often accompanied by higher spreads: When the specialist11

notices unusually high volumes of trade, she is more likely to increase spreads to compensate12

for inventory holding costs or/and higher adverse selection risk.13
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Figure 4: Trading Volume and mean depth
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(a) Volume (VOLU)
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(b) Depth (DPTH)

Full black line is the median standardized liquidity measure. The shaded region is the range between the 2.5% and 97.5%

quantiles. Black dots (•) indicate that the null hypothesis of the Mann-Whitney test (according to which the standardized

liquidity measures in the event window around jumps come from the same distribution as the ones on days without jumps)

is rejected at the 99% confidence level. White bullets (◦) indicate a rejection at a 95% only (i.e. 1% < p− value ≤ 5%).

Let us zoom in on the drivers behind this volume surge: Is it due to a higher number of

trades or to a larger trade size? Figure 5 shows that both the number of trades and average1

trade size jump up. These findings confirm that jumps are driven by variations in the demand2

for immediacy. Jumps are due to the market inability to absorb new orders without moving3

the price significantly up or down.4

In general, the median incremental effect of jumps on average trade size is around 75%

across stocks and days. Kim and Verrecchia (1994) link the size of trades to the quality of5

information possessed by traders. Easley and O’Hara (1987) point out that informed traders6

prefer to trade in larger sizes. These propositions fit well into the information scenario: when7

the source of information is public, the traders’ information advantage is fleeting rapidly.8

Immediacy becomes of essential and traders therefore prefer larger trade sizes. Of course, to9

minimize price impact, large orders may be split into smaller ones, either by the investors10

themselves or by the floor brokers. Such splitting of orders may explain the rise in the number11
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Figure 5: Average Trade Size and Number of Trades
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(a) Average Trade Size (ATS)
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(b) Number of trades (NT)

Full black line is the median standardized liquidity measure. The shaded region is the range between the 2.5% and 97.5%

quantiles. Black dots (•) indicate that the null hypothesis of the Mann-Whitney test (according to which the standardized

liquidity measures in the event window around jumps come from the same distribution as the ones on days without jumps)

is rejected at the 99% confidence level. White bullets (◦) indicate a rejection at a 95% only (i.e. 1% < p− value ≤ 5%).

of transactions. However, the rise in average trade size is marked and undeniable, suggesting1

that the demand of immediacy is particularly strong.2

The effect of jumps on the number of transactions is even higher: When a jump occurs, the

number of trades is 2.5 times its time-of-day median value across days with no jump. We also3

note that the persistence in trading volume on days with large jumps is due to the persistence4

in the number of trades, not in the average trade size. This level of persistent and intense5

trading around jumps suggests that market participants need some time to rebalance their6

portfolio, satisfy their pent-up demand or even adjust their hedging positions.7

Interestingly, we provide weak evidence of a run-up in volume and spreads before jumps.

In Figures 3-4, the curve remains pretty flat until right before the jump. This suggests that the8

information content of news leading to jumps is essentially unexpected. The occasional small9

run-up is more likely to be due to a reflection of a climate of uncertainty than an anticipation10
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Figure 6: Order Imbalance and Depth Imbalance
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(a) Order Imbalance (OI)
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(b) Depth Imbalance (DI)

Full black line is the median standardized liquidity measure. The shaded region is the range between the 2.5% and 97.5%

quantiles. Black dots (•) indicate that the null hypothesis of the Mann-Whitney test (according to which the standardized

liquidity measures in the event window around jumps come from the same distribution as the ones on days without jumps)

is rejected at the 99% confidence level. White bullets (◦) indicate a rejection at a 95% only (i.e. 1% < p− value ≤ 5%).

by astute market players. This argument is reinforced by the complete absence of drift in order1

imbalance before the jumps, as shown in Figure 6.2

Figure 4 illustrates how quoted market depth (at the best-bid offer) increases around jumps.

Despite higher spreads and trading volume, depth does not withdraw from the market. Liq-3

uidity provision even improves when a jump occurs. It is noteworthy that a greater demand4

for liquidity, rather than a weak liquidity supply, is associated with extreme price changes.5

Simply put: an increased demand for immediacy does not translate into weak liquidity supply.6

Jumps do not seem to be due to a deficient provision of market liquidity, suggesting that they7

cannot be considered endogenous. On the one hand, a larger number of trades is executed and8

a higher volume is traded. On the other hand, market depth on both sides of the market helps9

meeting this higher demand of liquidity (Figure 7).10

Total mean depth hides movements of depth at the bid and the ask. Figure 7 shows that

during a positive (negative) jump, the ask (bid) quote increases (decreases) more than bid (ask)11
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Figure 7: Mean Ask and Bid Depth
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(a) Ask depth (ADPTH)
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(b) Bid depth (BDPTH)

Full black line is the median standardized liquidity measure. The shaded region is the range between the 2.5% and 97.5%

quantiles. Black dots (•) indicate that the null hypothesis of the Mann-Whitney test (according to which the standardized

liquidity measures in the event window around jumps come from the same distribution as the ones on days without jumps)

is rejected at the 99% confidence level. White bullets (◦) indicate a rejection at a 95% only (i.e. 1% < p− value ≤ 5%).

quote. Such findings suggest that jumps depend mainly on the elevated trading aggressiveness1

of one side of the market, and not on the traders’ reluctance to provide liquidity on the opposite2

side of the book. Indeed, positive (negative) jumps are associated with even thicker sell side3

(buy side). This evidence is consistent with Parlour (1998) who shows that in a competitive4

environment, liquidity supply provides higher market depth to the most aggressive side of5

the market. In addition, the increase in liquidity provision on both sides of the market is6

accompanied by a modest and short-lived depth imbalance (Figure 6). Jumps lead to a 10%7

deviation in depth imbalance from the ’no jump’ time-of-day median value and the imbalance8

disappears around 10 minutes after the occurrence of a jump.9

The combination of spread and depth changes suggest that, on average, quoted liquidity

does not deteriorate significantly in response to volume shocks around jumps. Although the10

first dimension of liquidity (i.e. trading costs) is negatively affected by the occurrence of11

jumps, the second dimension (i.e. trading quantity) benefits substantially. While the spread12
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widening effect is consistent with Easley and O’Hara (1992)’s model in which specialists use1

trading volume to infer the presence of informed traders, the increase in liquidity provision is2

consistent with Harris and Raviv (1993) in which increased volume primarily reflects increased3

liquidity trading and, therefore, higher overall market liquidity.4

Figure 6 shows that trading activity at the time of a jump is very unbalanced. Positive

(negative) jumps are characterized by a large buying (selling) pressure of about 60% above5

the ’non-jump’ time-of-day median value. According to Chordia et al. (2002), the degree of6

order imbalance is an indication about the relevance of the information release to the market.7

Since a high number of trades may be considered as a large sample of independent observers of8

the same signal, a high disequilibrium between buy and sell transactions suggests that market9

participants widely agree on the positive or negative effect of the news being released. Our10

results also show that order imbalance drops back quickly to its pre-jump level after the jump,11

in contrast to trading volume which is more persistent. Although market participants may12

initially agree on the direction of the prices, heterogenous beliefs about the revised fundamental13

value of the asset appear afterwards, leading to high trading volume and a more balanced fight14

between bulls and bears.15

5.3 Impact of news on the liquidity dynamics around jumps16

The next question that we study in Table 3 is how the occurrence of news affects the impact17

of jumps on liquidity. In Table 3 the median abnormal liquidity observed 10 minutes before18

the jump, at the jump and 30 and 60 minutes after the jump are reported when aggregated19

over 8 sets: all positive (negative) jumps, all positive (negative) jumps that are not associated20

with news, and all positive (negative) jumps that are associated with macroeconomics news21

and those associated with firm-specific news. The median abnormal liquidity of all positive22

(negative) jumps corresponds with the Figures 3-7.23

In terms of trading costs, the increase in both ex-ante and ex-post spreads within the

2-minute jump interval is found to be substantially higher when jumps coincide with news24

releases. The increase in trading costs after a news release is also persistent, especially when25

jumps are associated with macroeconomic news: the shock in spreads seems to persist for 6026

minutes after the occurrence of a jump. The most persistent shocks occur on ex-post trading27

costs (i.e. effective spread) when there is a negative jump accompanied by the release of a28

(bad) macroeconomic news announcement.29
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If we look at volume, average trade size, and number of trades, the increase and the

persistence in the demand for immediacy are also found to be typically higher when a jump1

coincides with a macroeconomic or firm news release (than when it does not). The increase in2

each of these liquidity proxies at the time of the jump tends to be the highest when the jump3

is associated with firm news.4

In contrast to the other liquidity proxies, shocks in depth, order imbalance, and depth

imbalance are especially short-lived and rather unaffected by the release of news.5

Overall, the release of news around jumps amplifies the rise in both trading costs and

demand for immediacy. However, the arrival of news does not really affect neither order6

imbalance nor liquidity provision: liquidity providers do not respond to the increase in trading7

costs and demand for immediacy by providing less liquidity, keeping order imbalance relatively8

unchanged.9

5.4 Contribution of liquidity shocks to jumps10

The empirical findings documented in the previous subsections suggest that liquidity shocks11

around jumps are substantial but do not necessarily worsen market quality across the board.12

In this subsection, we examine how shocks in effective spread (ESPRD), mean depth (DPTH),13

number of trades (NT), absolute order (flow) imbalance (OI*) and absolute depth imbalance14

(DI*) explain the probability that a jump will occur.1015

In Table 4, we run three binary dependent variable models to test whether any liquidity

variable contributes to the occurrence of stock jumps with a 2-minute time lag. The logit,16

probit, and gombit models lead to the same conclusions: shocks in the effective spread and the17

number of trades are the key liquidity drivers behind the occurrence of a jump. The number18

of stocks with positive and significant coefficients for the number of trades varies between 2619

and 29 stocks across the three models. This number is between 24 and 29 for the effective20

spread. All other liquidity variables have negligible impact. In particular, imbalances do not21

increase the explanatory power of the regressions beyond trade frequency and market width,22

confirming our nonparametric event study. Jumps do not seem to be related to the one-sided23

withdrawal or disequilibrium in displayed depth. Market practitioners do not significantly24

withdraw their orders (on one side of the market, at least) to avoid being picked off in the25

10The abnormal levels of liquidity are constructed similarly as in (4.4) and (4.7), but using the lagged daily
liquidity L̂t−1 rather than L̂t. More precisely, for spreads, depth and number of trades, the liquidity shock in the
forecast equations are computed as Lt,i/(L̂iL̂t−1) and for the depth and order imbalance, we use Lt,i−L̂t−1−L̂i.
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Table 3: Impact of news on the liquidity dynamics around jumps
Positive jumps Negative jumps

No News Macro News Firm News No news Macro News Firm News
ESPRD -10 0.029 0.015 0.080 -0.023 0.037 0.050 0.048 -0.097

0 0.995 0.846 1.601 1.723 1.034 0.795 1.572 1.322

30 0.122 0.097 0.231 0.154 0.181 0.106 0.427 0.163
60 0.060 0.036 0.125 0.075 0.112 0.054 0.217 0.261

QSPRD -10 -0.002 -0.001 -0.004 0.001 0.044 0.020 0.093 0.043
0 0.290 0.250 0.628 0.616 0.259 0.199 1.010 0.354

30 0.069 0.050 0.133 0.114 0.107 0.089 0.178 0.118
60 0.005 -0.003 0.069 0.031 0.035 0.005 0.125 0.026

VOLU -10 0.067 0.119 0.005 -0.228 0.100 0.083 0.143 -0.055
0 3.223 2.854 4.677 12.040 3.018 3.000 2.727 4.429

30 00.284 0.189 0.719 1.018 0.297 0.174 0.633 0.626

60 0.158 0.061 0.413 0.260 0.081 0.073 0.084 0.921
ATS -10 0.018 0.017 0.025 0.013 0.014 0.004 0.061 -0.224

0 0.729 0.625 0.847 2.474 0.781 0.780 0.656 0.962

30 0.035 0.012 0.121 0.139 0.085 0.067 0.156 0.238
60 0.031 0.022 0.120 -0.061 0.016 0.021 -0.029 0.096

NT -10 0.027 0.038 0.023 0.041 0.052 0.026 0.151 0.207
0 1.370 1.219 1.651 2.358 1.322 1.222 1.462 1.481

30 0.205 0.138 0.500 0.543 0.226 0.162 0.435 0.367
60 0.104 0.019 0.457 0.306 0.103 0.061 0.227 0.543

DPTH -10 0.057 0.067 0.035 0.137 0.060 0.065 -0.002 -0.004
0 1.101 1.079 1.060 2.575 0.895 1.044 0.463 1.209

30 0.003 -0.027 0.063 0.253 -0.014 -0.012 -0.023 0.452
60 0.029 -0.037 0.112 0.109 -0.020 -0.023 -0.107 0.274

OI -10 -0.004 0.006 -0.045 0.192 -0.024 0.015 -0.225 -0.228
0 0.529 0.561 0.465 0.529 -0.480 -0.510 -0.417 -0.282

30 -0.009 -0.017 0.010 0.126 0.034 0.025 0.082 -0.123
60 -0.062 -0.049 -0.183 0.365 -0.058 0.015 -0.124 -0.107

DI -10 -0.015 -0.041 0.013 0.019 -0.02 -0.008 -0.023 -0.287
0 0.119 0.119 0.115 0.073 -0.100 -0.100 -0.097 -0.154
30 -0.010 -0.005 -0.016 -0.009 0.008 -0.007 0.055 -0.011
60 0.023 0.034 0.017 -0.095 -0.002 -0.005 0.015 -0.074

Abnormal liquidity is measured as the median standardized liquidity measure. Third and seventh columns present the

abnormal liquidity for all positive and negative jumps, respectively. Columns 4 (resp. 8), 5 (resp. 9) and 6 (resp. 10)

are summary statistics for positive (resp. negative) jumps that coincide with the absence of news release, the release

of macronews and the release of firm news in the 10 minutes around the jump interval, respectively. All statistics are

computed over the 30 stocks included in the filtered sample of 839 jumps in the period July 2007-December 2009, used

for the event study analysis. Numbers in bold indicate that the null hypothesis of the Mann-Whitney test (according to

which the standardized liquidity measures in the event window around jumps come from the same distribution as the

ones on days without jumps) is rejected at the 99% confidence level. Numbers in italics indicate a rejection at a 95%

only (i.e. 1% < p− value ≤ 5%).
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Table 4: Contribution of liquidity shocks to the probability of price jump. Stock by stock
binary discrete choice models, using a 2-minute time lag.

DPTH ESPRD NT OI* DI* VOLA

LOGITModel

β -0.029 0.302 0.562 -0.007 -0.384 -0.817
σβ 0.107 0.069 0.121 0.702 1.232 0.720
# + significant at 5% 5 28 29 0 0 0
# + significant at 10% 9 28 29 1 0 0
# − significant at 5% 0 0 0 1 1 3
# − significant at 10% 0 0 0 1 2 6
% McFadden R2 4.037

PROBITModel

β -0.008 0.175 0.112 0.011 -0.080 -0.240
σβ 0.031 0.046 0.031 0.189 0.329 0.191
# + significant at 5% 5 29 26 0 0 0
# + significant at 10% 6 29 27 1 0 2
# − significant at 5% 0 0 0 0 1 6
# − significant at 10% 0 0 0 1 2 7
% McFadden R2 4.412

GOMBITModel

β -0.004 0.065 0.085 0.008 -0.028 -0.117
σβ 0.015 0.021 0.025 0.085 0.148 0.086
# + significant at 5% 4 24 29 0 0 0
# + significant at 10% 5 26 29 1 0 0
# − significant at 5% 0 0 0 0 1 7
# − significant at 10% 0 0 0 2 1 8
% McFadden R2 4.674

P (JUMP(i)t = 1|X) = G(αi + β1,iDPTH(i)t−1 + β2,iESPRD(i)t−1

+β3,iNT(i)t−1 + β4,iOI∗(i)t−1 + β5,iDI∗(i)t−1 + β6,iV OLA(i)t−1)

The above regression is run for each of the 30 constituents of the DJIA index over the period July 2007-
December 2009 at the 2-minute frequency level. P (JUMP(i)t = 1|X) is the response probability that a jump
occurs for stock i at intraday time t given a set of explanatory variables X which includes shocks in mean depth
(DPTH), effective spread (ESPRD), number of trades (NT), absolute order (flow) imbalance (OI*), absolute
depth imbalance (DI*), as well as realized volatility (VOLA). All explanatory variables are included with a time
lag of 2 minutes, except volatility which is computed over the 20-minute interval before the jump. G is the
CDF of the logistic, standard normal, and Type-I extreme value (skewed) distribution, respectively. The logit,
probit, and gombit models are estimated by maximum likelihood using the Quadratic Hill Climbing optimization
algorithm. Huber-White standard errors are computed. For brevity, we only report the equally-weighted cross-
sectional mean beta coefficients, with corresponding statistics and cross-sectional mean McFadden R-squared.
We also report the number of positive and negative beta coefficients which are statistically different from zero
at the 5% and 10% levels.
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upcoming jump event. We also confirm the weak role played by the imbalance in order flow,1

as pointed out by the complete absence of drift before the jumps in Figure 6. Because the2

power of the Lee-Mykland jump test increases when volatility is lower, the level of volatility is3

negatively related to the likelihood to detect jumps.4

In Table 5, we study the contribution of liquidity shocks to jumps at longer time lags.11

There is again strong evidence that the occurrence of jumps is significantly increased by pre-5

jump shocks in the number of trades and in the effective spread. The explanatory power of6

these two liquidity shock variables remains strong even at the 20-minute time lag. Shocks in7

the effective spread and the number of trades lose their significance at longer lags.8

In Table 6, the logistic regression includes two additional explanatory variables. The ob-

jective is to capture the contribution of both macro and firm-specific news to the occurrence9

of jumps. The explanatory power is found to be higher at each time lag. The increase in10

the goodness-of-fit of the logistic model is due to the significance of both the firm-specific and11

macro news dummies. Nevertheless, the effect of firm-specific news seems more pervasive.12

While the number of stocks with positive and significant coefficients for the macro dummy is13

always between 10 and 15, it varies between 12 and 19 stocks for the firm-specific dummy.14

Most importantly, the marginal effects of firm-specific news are always more than twice those15

of macro news. As in Bollerslev et al. (2008), when it comes to characterizing the occurrence16

of jumps on large US caps, we confirm that firm-specific news are the dominant factor in terms17

of their impact on the occurrence of jumps at the individual stock level.1218

5.5 Contribution of liquidity shocks to price discovery19

To study the information content of liquidity variables with respect to price discovery, we20

regress returns computed at different time intervals on the key liquidity variables described21

above. We also control for the release of news and the occurrence of jumps by adding two22

11We only report the results for the logit model because the probit and gombit models lead to very similar
results. They are available upon request.

12As indicated before, the joint probability of observing a jump and a firm-specific news release is around
5%, while it is close to a third for the joint probability of observing a jump and a macro news release. The
lower joint probability of the former (in spite of the higher probability of a jump conditional on a firm specific
news) can be explained by the fact that the unconditional probability of a macroeconomic news release is much
larger than the unconditional probability of firm news. In fact, over the complete sample, we have 5128 macro
news items, while the number of firm news releases ranges between 215 and 6391 per ticker with median value
of 1213.
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Table 5: Contribution of liquidity shocks to the probability of jumps. Stock by stock logit
models. Beyond 2-minute time lag.

DPTH ESPRD NT OI* DI* VOLA

4−minute lag

β -0.022 0.320 0.234 -0.024 -0.159 -0.982
σβ 0.074 0.069 0.055 0.444 0.779 0.737
# + significant at 5% 5 27 29 0 0 0
# + significant at 10% 5 29 29 2 0 0
# − significant at 5% 0 0 0 0 0 6
# − significant at 10% 0 0 0 1 0 10
% McFadden R2 4.218

10−minute lag

β -0.004 0.124 0.150 0.035 -0.052 -1.155
σβ 0.030 0.038 0.052 0.225 0.425 0.806
# + significant at 5% 8 25 27 3 1 0
# + significant at 10% 10 27 27 4 1 0
# − significant at 5% 1 0 0 1 0 7
# − significant at 10% 1 0 0 1 0 10
% McFadden R2 3.760

20−minute lag

β -0.004 0.055 0.084 0.029 0.013 -0.953
σβ 0.018 0.026 0.045 0.138 0.238 0.814
# + significant at 5% 7 17 24 3 3 0
# + significant at 10% 7 22 25 3 5 0
# − significant at 5% 1 0 0 0 1 3
# − significant at 10% 2 0 1 0 1 8
% McFadden R2 3.061

60−minute lag

β -0.002 0.014 0.018 0.018 0.027 -0.745
σβ 0.010 0.013 0.026 0.060 0.105 0.573
# + significant at 5% 6 9 10 2 3 0
# + significant at 10% 6 10 14 6 3 0
# − significant at 5% 0 0 0 0 1 3
# − significant at 10% 1 0 1 2 1 9
% McFadden R2 2.196

P (JUMP(i)s = 1|X) = G(αi + β1,iDPTH(i)s−∆ + β2,iESPRD(i)s−∆

+β3,iNT(i)s−∆ + β4,iOI∗(i)s−∆ + β5,iDI∗(i)s−∆ + β6,iV OLA(i)s−∆)

The above regression is run for each of the 30 constituents of the DJIA index over the period July 2007-
December 2009 at the 2-minute frequency level. P (JUMP(i)s = 1|X) is the response probability that a jump
occurs for stock i at intraday time s given a set of explanatory variables X which includes shocks in mean depth
(DPTH), effective spread (ESPRD), number of trades (NT), absolute order (flow) imbalance (OI*), absolute
depth imbalance (DI*), as well as realized volatility (VOLA). All explanatory variables are included with a
time lag of ∆ = 4/10/20/60 minutes, except volatility which is computed with a time lag of ∆ = 20/20/20/60-
minute interval before the jump. G is the CDF of the logistic distribution. The logit model is estimated by
maximum likelihood using the Quadratic Hill Climbing optimization algorithm. Huber-White standard errors
are computed. For brevity, we only report the cross-sectional mean McFadden R-square as well as the number
of positive and negative beta coefficients which are statistically different from zero at the 5% and 10% level.
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Table 6: Contribution of news to the probability of jumps. Stock by stock logit models.
2-minute time lag and beyond.

DPTH ESPRD NT OI* DI* VOLA MACRO FIRM

2−minute lag

β -0.029 0.319 0.578 0.062 -0.301 -0.646 1.165 2.420
σβ 0.107 0.076 0.128 0.645 1.111 0.597 1.044 1.386
# + significant at 5% 5 29 29 0 0 1 10 14
# + significant at 10% 9 30 29 3 0 2 14 17
# − significant at 5% 0 0 0 1 0 5 0 0
# − significant at 10% 0 0 0 1 1 9 0 0
% McFadden R2 6.733

4−minute lag

β -0.024 0.246 0.323 0.025 -0.122 -0.817 1.134 2.360
σβ 0.053 0.056 0.076 0.422 0.693 0.614 1.063 1.402
# + significant at 5% 4 29 29 1 0 0 10 13
# + significant at 10% 8 30 29 3 0 0 14 17
# − significant at 5% 0 0 0 0 0 7 0 0
# − significant at 10% 0 0 0 1 0 9 0 0
% McFadden R2 6.869

10−minute lag

β -0.005 0.170 0.125 0.060 -0.026 -1.006 1.126 2.361
σβ 0.020 0.041 0.042 0.226 0.366 0.664 1.041 1.386
# + significant at 5% 5 29 24 3 0 0 10 14
# + significant at 10% 5 30 26 4 1 0 14 17
# − significant at 5% 0 0 0 1 0 9 0 0
# − significant at 10% 1 0 0 1 3 14 0 0
% McFadden R2 6.126

20−minute lag

β -0.006 0.092 0.058 0.047 0.030 -0.768 1.130 2.433
σβ 0.011 0.040 0.028 0.138 0.224 0.662 1.039 1.361
# + significant at 5% 3 26 17 3 2 0 11 12
# + significant at 10% 4 27 22 3 5 0 15 18
# − significant at 5% 0 0 0 1 1 3 0 0
# − significant at 10% 1 0 0 2 1 7 0 0
% McFadden R2 5.234

60−minute lag

β -0.005 0.026 0.014 0.024 0.036 -0.598 1.174 2.625
σβ 0.005 0.024 0.014 0.060 0.102 0.486 1.077 1.332
# + significant at 5% 3 12 8 3 3 0 11 17
# + significant at 10% 3 17 10 6 3 0 13 19
# − significant at 5% 0 0 0 1 0 4 0 0
# − significant at 10% 1 0 0 1 1 11 0 0
% McFadden R2 3.850

P (JUMP(i)s = 1|X) = G(αi + β1,iDPTH(i)s−∆ + β2,iESPRD(i)s−∆

+β3,iNT(i)s−∆ + β4,iOI∗(i)s−∆ + β5,iDI∗(i)s−∆ + β6,iV OLA(i)s−∆)

The above regression is run for each of the 30 constituents of the DJIA index over the period July 2007-December
2009 at the 2-minute frequency level. P (JUMP(i)s = 1|X) is the response probability that a jump occurs for
stock i at intraday time s given a set of explanatory variables X which includes a dummy for macro news
(MACRO) and firm-specific news (FIRM), shocks in mean depth (DPTH), effective spread (ESPRD), number
of trades (NT), absolute order (flow) imbalance (OI*), absolute depth imbalance (DI*), as well as realized
volatility (VOLA). All explanatory variables are included with a time lag of ∆ = 2/4/10/20/60 minutes, except
volatility which is computed with a time lag of ∆ = 20/20/20/20/60-minute interval before the jump. G is the
CDF of the logistic distribution. The logit model is estimated by maximum likelihood using the Quadratic Hill
Climbing optimization algorithm. Huber-White standard errors are computed. For brevity, we only report the
cross-sectional mean McFadden R-square as well as the number of positive and negative beta coefficients which
are statistically different from zero at the 5% and 10% level.
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dummies. The model is described in Table 7.13 The dummy J is equal to 1 when there is a1

jump and 0 otherwise, while the dummy N is equal to 1 when there are news and 0 otherwise.2

On the one hand, we look the contribution of liquidity shocks to ‘post-jump’ price discovery ,3

i.e. price discovery after the occurrence of a jump. On the other hand, we look the contribution4

of liquidity shocks to ‘post-news’ price discovery , i.e. price discovery after the release of news.5

We therefore include two intercept dummies and two interaction terms between each liquidity6

variable and each dummy.7

Results indicate that liquidity shocks affect price discovery irrespective of the occurrence of

a jump. Price discovery is undoubtedly affected by liquidity, in particular by order and depth8

imbalances. With respect to post-jump price discovery, there is almost no significant effect.9

Interaction terms are significant in a few cases only, indicating that no liquidity variable is10

more informative with respect to price discovery after the occurrence of a jump. At the 10-11

minute time interval, the coefficient for the interaction term is significant at the 10% level for12

a maximum of 4 stocks (with respect to order imbalance, again). In every case, there is a13

higher number of stocks with significant coefficients for the liquidity variable itself than for14

its interaction term. This holds true at each time interval and at every level of significance15

considered. We also see that the contribution of each liquidity variable to post-jump price16

discovery seems to decrease across time lags. All in all, the price discovery process seems17

rather unaffected by the occurrence of jumps.18

Regarding the post-news price discovery process, results are more informative. Liquidity

shocks in order imbalance affect price discovery are sensitive to the release of news. At the19

10-minute and 20-minute time intervals, 16 stocks display a statistically significant coefficient20

at the 5% level for the interaction dummy between shocks in order imbalance and the news21

dummy. We also see that the contribution of shocks in effective spread to price discovery is22

also higher when news are released.23

13To save space, only the results for the least squares estimator are reported, but the results using a robust
regression estimator are similar. They are available upon request.
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Table 7: Contribution of liquidity shocks to price discovery. Stock by stock least squares regression models.

DPTH DPTH*J DPTH*N ESPRD ESPRD*J ESPRD*N NT NT*J NT*N OI* OI*J OI*N DI DI*J DI*N

10-minute post-jump

# + significant at 5% 3 2 1 6 3 0 10 1 2 21 3 12 20 0 1
# + significant at 10% 3 3 2 6 3 0 12 2 3 21 4 16 20 0 3
# − significant at 5% 7 1 0 12 2 7 3 2 1 0 0 0 0 2 0
# − significant at 10% 7 2 0 13 2 7 4 3 2 0 1 0 0 2 1
Adj. R2 8.77

20-minute post-jump

# + significant at 5% 5 0 0 6 2 0 11 0 2 21 1 12 21 0 1
# + significant at 10% 6 0 1 6 2 0 11 0 2 21 1 14 21 1 2
# − significant at 5% 7 1 0 15 1 6 3 1 2 0 0 0 0 1 2
# − significant at 10% 8 1 0 15 1 10 3 1 2 0 1 0 0 1 2
Adj. R2 7.01

40-minute post-jump

# + significant at 5% 7 0 1 5 4 0 11 1 6 21 0 7 21 0 2
# + significant at 10% 8 0 2 5 4 0 11 1 9 21 0 8 21 0 2
# − significant at 5% 6 0 1 14 0 2 4 0 0 0 0 0 0 0 1
# − significant at 10% 7 1 2 14 0 3 4 0 0 0 1 0 0 2 1
Adj. R2 5.42

60-minute post-jump

# + significant at 5% 8 0 1 5 1 0 13 0 8 21 0 7 21 1 1
# + significant at 10% 9 0 2 6 2 1 13 1 8 21 1 10 21 1 2
# − significant at 5% 7 0 1 13 0 4 6 1 1 0 0 0 0 0 1
# − significant at 10% 7 0 2 14 0 5 6 1 1 0 0 0 0 1 2
Adj. R2 4.73

log(p(i)s+∆/p(i)s) = αi + β1,iJ(i)s + β2,iN(i)s + β3,iDPTH(i)s+∆ + β4,iDPTH(i)s+∆J(i)s + β5,iDPTH(i)s+∆N(i)s

+β6,iESPRD(i)s+∆ + β7,iESPRD(i)s+∆J(i)s + β8,iESPRD(i)s+∆N(i)s + β9,iNT(i)s+∆ + β10,iNT(i)s+∆J(i)s + β11,iNT(i)s+∆N(i)s

+β12,iOI∗(i)s+∆ + β13,iOI∗(i)s+∆J(i)s + β14,iOI∗(i)s+∆N(i)s + β15,iDI∗(i)s+∆ + β16,iDI∗(i)s+∆J(i)s + β17,iDI∗(i)s+∆N(i)s + ǫ(i)s+∆

The above regression is run for each of the 30 constituents of the DJIA index over the period July 2007-December 2009 at the 2-minute frequency level.
log(p(i)s+∆/p(i)s) is the log mid-quote returns observed for stock i over the next ∆ time interval after time s, with ∆ = 10, 20, 40 and 60 minutes. The
explanatory variables are shocks in mean depth (DPTH), effective spread (ESPRD), number of trades (NT), order (flow) imbalance (OI), and depth
imbalance (DI). The dummy variable J(i)s (N(i)s) is equal to 1 when there is a jump (firm-specific or macroeconomic news release) at time s for stock i
and 0 otherwise. The regression is estimated using ordinary least squares with Newey-West standard errors. For brevity, we only report the cross-sectional
mean adjusted R-squared as well as the number of positive and negative beta coefficients which are statistically different from zero at the 5% and 10%
level.
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Clearly, the most informative liquidity variable with respect to price discovery is the order

imbalance. We also note that the contribution of liquidity shocks to price discovery is higher1

after the release of news than after the occurrence of jumps, although the effect is limited to2

a few liquidity variables.3

6 Conclusion4

How does stock market liquidity behave around intraday jumps? How informative are liq-5

uidity shocks when it comes to explaining the occurrence of jumps? Which liquidity shocks6

contribute the most to price discovery when jumps occur? How sensitive are these results to7

the release of news? To answer these questions, we study the dynamics of liquidity around8

jumps for the 30 constituents of the Dow Jones Industrial Average (DJIA) index. To the best9

of our knowledge, no event study has been carried out on the U.S. stock market to analyze the10

link between intraday liquidity dynamics and properly identified intraday jumps, whatever the11

type of information arrivals. To complement the nonparametric event study that we carry out12

in the first part of the paper, we implement a parametric analysis to assess the contribution of13

both liquidity shocks and news to the occurrence of jumps. We also estimate the contribution14

of liquidity shocks to the price discovery process, controlling for news arrivals and jump oc-15

currences. Not only we analyze the dynamics of liquidity around all jumps by identifying their16

exact intraday timing, but we also retrieve all macroeconomic news announcements (presched-17

uled or not) as well as all firm-specific news provided by the Dow Jones and Reuters News18

Services.19

If we characterize liquidity by market width, we do find a deterioration in liquidity around

jumps for the DJIA constituents. The increase in transaction costs, as measured by the quoted20

and effective spreads, is statistically significant (at 1%). The incremental effect of jumps on21

ex-ante liquidity is around 27% while its is about 100% for ex-post liquidity. Besides trading22

cost (market width), Liu (2006) highlights three other dimensions of liquidity, namely, trading23

quantity (depth), trading speed (immediacy), and price impact (resilience). In terms of trading24

quantity and immediacy, we show that the demand for immediate execution increases sharply25

around jumps. For example, jumps coincide with a 300% increases in dollar trading volume,26

i.e. four times the benchmark ’no jump’ time-of-day median value.27

Zooming in on the drivers behind this volume surge, we find that both the number of trades

and the average trade size jump up. In general, the incremental effect of jumps on average28
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trade size is around 75% on average across stocks and days. The effect of jumps on the number1

of transactions is even higher: When a big jump occurs, the number of trades is 2.5 times its2

time-of-day median value across days with no jump. These findings confirm that jumps are3

driven by variations in the demand for immediacy. Jumps are due to the market inability to4

absorb a sharp increase in the demand for immediacy without moving the price significantly5

up or down.6

However, depth (at the best bid-offer) does not withdraw from the market. The absence

of withdrawal of depth at the best quote contribute to smaller jumps since market orders7

erode depth more slowly once the information is released. Liquidity provision even improves8

when a jump occurs. We show that positive (negative) jumps are associated with even thicker9

sell side (buy side). Such findings suggest that jumps depend mainly on the elevated trading10

aggressiveness of one side of the market, and not on the traders’ reluctance to provide liquidity11

on the opposite side of the book. In fact, a greater demand for liquidity, rather than a weak12

liquidity supply, is associated with extreme price changes. As such, jumps do not seem to13

be due to an endogenous deficient provision of market liquidity. We also present evidence of14

significant resilience after the occurrence of a jump, whatever the liquidity measures under15

consideration.16

Evidence of resilience after the occurrence of a jump is undeniable, whatever the liquidity

measures under consideration. For example, although jumps lead to higher spreads, the effect17

is rather short-lived since spreads are back to pre-jump levels after around 10 minutes in the18

worst cases. In addition, imbalances in orders and depth drop back quickly to their pre-jump19

levels after the occurrence of a jump. The most persistent measure of liquidity is the number20

of trades, indicating that heterogenous beliefs about the revised fundamental value of the asset21

may persist after the jump, leading to high but more balanced trading volume.22

When estimating the sensitivity of the liquidity proxies to the release of macro and firm

news around jumps, we do find that the release of news around jumps amplifies the rise in23

both trading costs and demand for immediacy. However, the arrival of news does not really24

affect neither order imbalance nor liquidity provision: liquidity providers do not respond to25

the increase in trading costs and demand for immediacy by providing less liquidity, keeping26

order imbalance relatively unchanged.27

In the parametric analysis, we show that liquidity shocks in the effective spread and the

number of trades are the key liquidity drivers behind the occurrence of a jump. Compared28

with macroeconomic news, the arrival of firm-specific news is also identified as a stronger news29
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driver behind the occurrence of jumps. As in Bollerslev et al. (2008), we confirm that firm-1

specific news events are the dominant factor in terms of their impact on the occurrence of2

jumps at the individual stock level. Finally, we find that several liquidity variables contribute3

to price discovery on DJIA stocks. This contribution is nevertheless not much affected by the4

occurrence of jumps. The post-news price discovery process is more informative, but mainly5

limited to order imbalance. Overall, order imbalance appears to be the most informative6

liquidity variable with respect to price discovery, especially after the arrival of news.7

An avenue for further research (that we are currently exploring) is to study the information

content of order books to better understand how liquidity within the book reacts around jumps8

and the release of news. This will certainly help refine studies about the impact of jumps and9

news on financial markets, including ours.10
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